Volume 4 2023
Osservatorio Astronomico di Capodimonte, Napoli
1-6 Ottobre 2023
Self-Supervised Learning for Understanding Text, Imaging, Equations and Everything Else
Yann LeCun, New York University
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.1
Developments in Fast Machine Learning for Science
Matthew J. Graham, California Institute of Technology
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.2
Solving Differential Equations Using NN
Pavlos Protopapas, Harvard John A. Paulson School of Engineering and Applied Sciences
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.3
Deep Focus and ALMASim
Michele Delli Veneri, INFN-Sezione Napoli
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.4
GWA Gravitational-Wave Anomalous Knowledge with Recurrent Autoencoders
Ekaterina Govorkova, MIT
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.5
Unleashing the Power of Transformers for the Analysis of Cosmic Streams
Guillermo Cabrera, Universidad de Concepción
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.6
From Photometric Redshifts to Improved Weather Forecasts: an interdisciplinary view on machine learning in astronomy
Kai Polsterer, Heidelberg Institute for Theoretical Studies
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.7
Improvements to the ATLAS Real-Bogus Classifier
Joshua Weston, QUEENS UNIVERSITY BELFAST
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.8
Unsupervised learning for agnostic knowledge discovery from simulations
Sebastian Trujillo-Gomez, Heidelberg Institute for Theoretical Studies
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.9
Enabling New Discoveries with Machine Learning
Michelle Lochner, University of the Western Cape/South African Radio Astronomy Observatory
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.10
Reliable QSO classification in ZTF and KiDS surveys
Szymon Nakoneczny, California Institute of Technology
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.11
SOM MAPS FOR OUTLIER. CLASSIFICATION IN GAIA
Lara Pallas Quintela, University of A Coruña
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.12
From HST to JWST and Euclid: new algorithms for the study of the first galaxies
Emiliano Merlin, INAF - OAR
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.13
The Importance of Being Interpretable: ML as a partner in cosmological discovery
Michelle Ntampaka, SPACE TELESCOPE SCIENCE INSTITUTE
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.14
Discovering black hole mass scaling relations with Symbolic Regression
Zeaho Jin, New York University Abu Dhabi
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.15
Novel Computer Vision Applications for Radio Astronomy with-ASKAP
Nikhel Gupta, CSIRO Space & Astronomy ML/AI Future Science Platform (MLAI FSP)
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.16
Machine Learning the Universe with upcoming Large Sky Surveys
Nicola Napolitano, Department of Physics, University of Naples
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.17
Deep learning techniques to analyse high energy data of the AGILE space mission
Nicolò Parmiggiani, INAF-OAS
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.18
Cluster member detection with Faster Region. Convolution Neural Networks in HST Galaxy Clusters
Giuseppe Angora, University of Ferrara
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.19
Detection, instance segmentation, and classification with deep learning (DeepDISC)
Grant Merz, University of Illinois
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.20
Cavity Detection Tool. CADET
Martin Topinka, INAF-Osservatorio Astronomico di Cagliari
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.21
Coupling Exploratory Data Analysis and mL-Ops
Gennaro Zanfardino, Virtualitics, Inc.
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.22
Hybrid approach to improve deblending performance using machine learning along with traditional tools
Fernando Caro, INAF - Osservatorio Astronomico di Roma
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.23
Multidimensional Faint Object. Detection in Astronomical Image Data
Mohammad H. Faezi, University of Groningen
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.24
Representation Learning for Unsupervised Learning In Astronomy
Koketso Mohale, UNIVERSITY of the WESTERN CAPE
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.25
Training on the interface of astronomy and computer science
Johan Knapen, Instituto de Astrofísica de Canarias
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.26
Navigating Global Policy and Diplomacy through Astroinformatics: Insights from Science20
Pranav Sharma, INDIAN NATIONAL SCIENCE ACADEMY
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.27
Semi-Supervised Learning for Detecting Gravitationally Lensed Quasars
David Sweeney, THE UNIVERSITY OF SYDNEY
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.28
A BRAIN STUDY TO TACKLE IMAGING WITH ARTIFICIAL INTELLIGENCE IN THE ALMA 2030 ERA
Fabrizia Guglielmetti, INAF - Osservatorio Astronomico di Capodimonte
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.29
Anomaly detection: overview and application to ZTF
Ashish Mahabal, California Institute of Technology
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.30
ASTRONOMALY at Scale: Searching for Anomalies Amongst 4 Million Galaxies
Verlon Etsebeth, Department of Physics and Astronomy, University of the Western Cape, South Africa
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.31
Probabilistic Cross Correlation for Delay Estimation
Nikos Gianniotis, Heidelberg Institute for Theoretical Studies
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.32
Connected Morphological Operators in Astronomy: Tools for Object Detection and Pattern Analysis on Vast Data
Michael Wilkinson, University of Groningen, The Netherlands
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.33
Searching for long faint astronomical high energy transients: a data driven approach
Riccardo Crupi, Università degli Studi di Udine
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.34
Characterisation of the Hi-GAL clumps parameter space through experiments of Feature Selection
Ylenia Maruccia, INAF - Istituto di Astrofisica e Planetologia Spaziali
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.35
Quantum Computational Intelligence
Giovanni Acampora, University of Naples Federico Il
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.36
Quantum computing for natural sciences and machine learning applications
Francesco Tacchini, IBM Quantum, IBM Research Europe - Zurich
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.37
A Planar Black Hole Mass Scaling Relation
Benjamin Davis, Center for Astrophysics and Space Science, New York University Abu Dhabi
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.38
Detecting transients in count time series with Poisson-FOCuS
Giuseppe Dilillo, INAF - Istituto di Astrofisica e Planetologia Spaziali
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.39
Finding Optically Variable AGN with Machine Learning Techniques (an ongoing work)
Demetra De Cicco, Universita degii Studi di Napoii "Federico II"
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.40
Predicting the redshift of AGNs using SuperLearner
Aditya Narendra, Astronomical Observatory of Jagiellonian University Krakow, Poland
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.41
Solving Large-scale Data Challenges with ESA Datalabs
Pablo Gómez, Data Science Section, SCI-SAS ESA ESAC
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.42
From Source Detection to Rare Object Detection
Samira Rezaei, Leiden Institute for Advance Computer Science
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.43
Explaining the predictions of a machine learning classifier for gravitational wave events
Nayyer Raza, McGill University
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.44
AIDA. A versatile software framework for astronomical scientific and instrumentation data analysis.
Giuseppe Riccio, INAF - Astronomical Observatory of Capodimorite, Napoli
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.45
Planet Detection via High-Contrast Imaging Using Deep Learning
Cristobal Donoso-Oliva, INAF - Osservatorio Astronomico di Capodimonte
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.46
Machine Learning approach to Sunyaev-Zel'dovich cluster radial mass profiles
Antonio Ferragamo, Instituto do Astrofsica da Canarias
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.47
Joint machine learning and analytic track reconstruction for X-ray polarimetry with Gas Pixel Detectors
Nicolò Cibrario, Università degli Studi di Torino
DOI: https://doi.org/10.36116/VIDEOMEM_4.2023.48